MatSE 597E: Computational Materials Science II: Continuum, Mesocale Simulations

3 credit, TR: 9:45-11:00, 119 Steidle

Instructors: Zi-Kui Liu, Long-Qing Chen, and Tarasankar DebRoy

This special topic course will focus on computational techniques and fundamentals of phase transformation simulations on the continuum, mesocale level. It will be taught in the computer lab in Steidle. The objective of the course is to introduce the evolution of simulation techniques and integrate fundamental principles in thermodynamics and kinetics with advanced computational approaches. The teaching will be problem-oriented using literature publications. There will be many hands-on computer exercises to gain experience in presenting problems to computer and interpreting the computer results. This course is particularly useful for students who would like to explore the power of computational approaches and would like to understand the thermodynamic and kinetic principles behind computational phase transformations.

Prerequisite: MatSE 401 and MatSC 501: Thermodynamics of Materials or equivalent and knowledge of phase transformations.

List of Topics
.Dr. Liu
.Review thermodynamic and kinetic principles
.Modeling of atomic mobility
.Simulation of diffusional phase transformations
.Dr. DebRoy
.Time-Temperature-Transformation simulation for inclusions
.Monte-Carlo simulation of grain growth
.Dr. Chen
.Kinetic Monte-Carlo simulation: ordering and phase separation
.Microscopic diffusion equation modeling of diffusional processes
.Time-dependent Ginzburg-Landau equations: order parameters and Landau expansions, and antiphase domain coarsening
.Cahn-Hilliard equations: phase separation, precipitate coarsening
.Coherency strain energy and applied stress: coherent precipitate morphologies, ferroelectric and ferroelastic domains
.Phase-field simulation: solidification, grain growth
.Project of the course

Contact: Zi-Kui Liu, 209 Steidle,, phone: 5-1934
Tarasankar DebRoy, 115 Steidle,, phone 5-1974
Long-Qing Chen, 102 Steidle,, phone: 3-8101

Lecture SequenceProf. Liu: January 13 to February 5
Prof. DebRoy: February 10 to March 10
Prof. Chen: March 23 to April 29